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Abstract

In this paper, we propose a unified framework for Quantum-corrected drift-diffusion (QCDD) models in nanoscale
semiconductor device simulation. QCDD models are presented as a suitable generalization of the classical drift-diffu-
sion (DD) system, each particular model being identified by the constitutive relation for the quantum-correction to the
electric potential. We examine two special, and relevant, examples of QCDD models; the first one is the modified DD
model named Schrodinger—Poisson—drift-diffusion, and the second one is the quantum-drift-diffusion (QDD) model.
For the decoupled solution of the two models, we introduce a functional iteration technique that extends the classical
Gummel algorithm widely used in the iterative solution of the DD system. We discuss the finite element discretization of
the various differential subsystems, with special emphasis on their stability properties, and illustrate the performance of
the proposed algorithms and models on the numerical simulation of nanoscale devices in two spatial dimensions.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction and motivations

The accurate prediction of the electrical behavior of up-to-date nanoscale semiconductor devices de-
mands for the inclusion of quantum effects, such as, for example, increased equivalent oxide thickness
due to strong electron confinement at silicon-silicon dioxide interface or direct tunneling through the
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channel potential barrier [1-3]. As these effects cannot be appropriately dealt with by the classical drift-dif-
fusion (DD) model, alternative and more sophisticated mathematical models must be adopted. In this re-
spect, two main approaches can be taken:

(1) employing a full quantum description of charge transport;
(i1) adding a suitable correction to the basic DD model to include quantum electrostatics.

The first approach typically relies on quantum models based on the non-equilibrium Green’s function [4]
or the Wigner function [5]. Another model is adopted in [6] to study the behaviour of devices in the quan-
tum ballistic limit and requires strong assumptions on the wavefunctions in the metal leads. All of these
models provide a very accurate and complete physical information on the quantum mechanical phenomena
occurring in the device. However, a certain lack of numerical robustness and the intensive computational
cost make these models still unsuitable for routine industrial semiconductor device simulation. These con-
siderations strongly prompt towards investigating the approach (ii). This latter has the advantage to exploit
all the benefits arising from the well established mathematical and numerical experience on the basic DD
model, allowing at the same time to design a state-of-the-art simulation tool.

In this work, we focus on two relevant modifications of the basic DD system, namely, the quantum—
drift-diffusion (QDD) model proposed in [7] and the Schrédinger—Poisson—drift-diffusion (SPDD) model
proposed in [8].

The QDD model emanates from a self-consistent derivation of a generalized equation of state for the
electron gas which includes a dependence on the gradient of electron density. This, in turn, allows to incor-
porate quantum phenomena description into the classical DD model by means of a quantum correction to
the electric potential, the so called Bohm potential [9].

The SPDD model is based instead on a fully two-dimensional consistent solution of the Schrodinger—
Poisson subsystem within a subregion of the semiconductor device, and incorporates quantum effects into
the classical DD framework by means of a modified density of states. The SPDD model is more accurate
than previous simulation schemes based on the coupling of the DD model with a one-dimensional solution
of the Schrédinger equation [1,10-12, 43], requiring at the same time a reduced computational cost com-
pared to the solution of a full quantum model.

In this paper, we show that the modification of the density of states in the SPDD model can indeed be re-
garded as a suitable quantum correction of the electric potential in the DD current relation. This allows to inter-
pret the SPDD model as a variation of the QDD model, and, more generally, to view both the SPDD and the
QDD models as special instances of a unified mathematical framework for nanoscale semiconductor device
simulation, denoted henceforth as quantum-corrected drift-diffusion (QCDD) approach. This latter family
of models thus represents a suitable generalization of the classical drift-diffusion (DD) system, each particular
model being identified by the constitutive relation for the quantum-correction to the electric potential.

Following the derivation of a unified framework for QCDD transport models, we propose to apply a
functional iteration technique, which is customarily and successfully used in standard DD-based semicon-
ductor device simulation, to the decoupled numerical solution of the nonlinear boundary value problems
deriving from both the SPDD and QDD models. The iteration procedure is a generalized Gummel algo-
rithm [13-15] and, to our knowledge, represents the first fully decoupled functional iteration procedure
applied to the QDD model (see also [16,17] for the use of other partially decoupled iterative maps). The
advantage of adopting a Gummel-type iteration is twofold: on the one hand, it considerably saves compu-
tational effort and memory storage at each step, which is of relevant importance in multidimensional sim-
ulations; on the other hand, it leads to successively solving elliptic quasi-linear and linear boundary value
problems for which efficient and stable discretization methods can be employed [18,19]. Moreover, the
performance of the iterative procedure can be properly improved by resorting to suitable acceleration tech-
niques, for example, Newton-Krylov subspace iterations [20,21].
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The outline of the paper is as follows. In Section 2, we introduce the DD, SPDD and QDD transport
models, while in Section 3, we present a generalized framework for QCDD models, that encloses as special
cases both the SPDD and QDD models. Then, in Section 4, we introduce a functional iteration to construct
a decoupled algorithm for the iterative solution of the SPDD and QDD systems, and in Section 5, we dis-
cuss the finite element discretization of the various differential subproblems obtained after decoupling. The
detailed description of the numerical algorithms used in the computations is discussed in Section 6. Finally,
in Section 7, we illustrate and compare the performance of the proposed algorithms and models on the
numerical simulation of nanoscale devices in two spatial dimensions. Some concluding remaks and perspec-
tives on future work are addressed in Section 8.

2. Physical models

In this section, we present the classical DD transport model and introduce the notation that will be
used for the SPDD and QDD models. For ease of presentation, we develop in detail the derivation of
the models only for electron carriers, as a similar treatment holds for hole carriers. Throughout the sec-
tion, we shall assume that the device domain Q2 is an open bounded set divided into two subregions, a
semiconductor region, Qg;, and an oxide region, Qux, such that Q = Qg U Qox. In each of these two re-
gions, we consider the material to be homogeneous and isotropic; this implies, in particular, that the elec-
tric permittivity ¢ is a scalar piecewise constant quantity over . The above device structure is an
appropriate model for a MOSFET (Metal-Oxide—Semiconductor Field-Effect Transistor), one of the most
widely used component in nowadays semiconductor device technology (see Sections 2.2, 3.2 and 7 for a
more detailed description).

2.1. The DD model

The classical DD model is the zeroth order moment in the expansion of the Boltzmann Transport Equa-
tion (see [5,15]) and, in the stationary case, it consists of the following system:

divJ, = qU in Qg;,
diVJp = —qU in QSia (1)
—div(eVp) =gq(p—n+D) in Q,

where ¢ > 0 is the electron charge, J, and J, are the electron and hole current densities, D is the net doping
profile in the device and Uis the net recombination rate. In (1), the first two equations represent the continuity
equations for electrons and holes # and p, while the third equation is the Poisson equation for the electrostatic
potential ¢. The issue of a suitable set of boundary conditions for (1) will be addressed in Section 3.2.

The following constitutive relation for the electron current density J, in terms of n and of the electron
quasi-Fermi potential ¢, can be derived through a linearization of the distribution function in phase space
around its equilibrium value (see [13, Chapter 2])

Jn(x) = —qp,n(x)Vo,(x), 2)

where x denotes the spatial coordinate of a point in the device domain and , is the electron mobility. In (2),
¢, describes the deviation of the distribution function from its equilibrium value and it reduces to the con-
stant Fermi potential ¢, at equilibrium when no current flow is expected. The electron density 7 can be
expressed as

o) = | B E0) (0,(0),E) dE in O, 3
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where E denotes energy, g(E,E.(x)) is the density of states, f{¢,(x),E) is the occupation probability density
and E(x) is the energy at the bottom of the conduction band.

Let x be a fixed point in Qg;. Then, for a non-degenerate semiconductor and assuming a single parabolic
energy band, we have

m\ 12
fBE0) = 5z (T5) (BB, E > B @
and
F(0,0,8) = exp (- E51200),

where m is the (scalar) electron effective mass, 7 is the reduced Planck constant, &, is the Boltzmann con-
stant and T is the lattice temperature. The computation of the integral in (3) yields

—q¢.(x) — Ec (X)> 7

ko T (5)

n(x) = N.exp (

where N, is the effective density of states in the conduction band. Let us introduce the intrinsic carrier
concentration

Hint = /NNy exp (— 212);) in Qs;,

where Eg,, is the (constant) energy band gap and N, is the effective density of states for holes of scalar
effective mass m, in the valence band. Then, relation (5) can be written as

1n(X) = Nint €XP <M> in Qg (6)
Vin
where Vy, = k,T/q is the thermal potential and

(P(x):_E%qEV(X)'F Vthln(\/Nc/Nv)y (7)

E.(x) = E(x) — Egap being the energy at the top of the valence band. Replacing (6) into (2) yields the famil-
iar DD expression of the electron current density

Ju(x) = =qu,(n(x)Vo(x) = Vi Vn(x)).
Repeating the above procedure for the hole density p, yields the following expression of the hole current
density:

Jp(x) = —qu,(p(x)Vo(x) + Vi Vp(x)),

where p, is the hole mobility.
2.2. The SPDD model

The SPDD model proposed in [8] generalizes the DD system by replacing the explicit expression (4) of
g(E,E.(x)) in terms of E and E.(x) with a direct computation of the discrete spectrum of energy states for
electron particles. The set of admissible energy states {E;}, i € N, is computed through the solution of the
stationary eigenvector/eigenvalue Schrodinger problem

div (% w(x)) 4 E()W(x) = EY(x) in Qsan, (8)
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where, by using (7), the relation between E.(x) and ¢(x) can be written as

Eca N,
E.(x) = —qop(x) + (%chﬂn \ /JVV)’

and Qg € Qs; is 2 computational domain to be properly defined.
To simplify the presentation, we introduce the following assumptions:

(@) Qscnr = Qg
(b) QSchr C IR3~

We defer the discussion of these two assumptions and of their associated physical consequences to the
end of this section, where we will also extend the presentation below to situations in which these assump-
tions do not hold.

To recover a density of states from the line spectrum obtained by solving (8), we introduce the following
new definition for g

9(Ex) = 237 3(E — Bl ©)

In (9), the summation is performed over all the possible energy states and 6(F — E;) denotes the Dirac delta
function centered at E;. Notice that this modified density of states does not depend explicitly on E.(x), as in
the case of the DD model. Rather, its spatial variation is given by the wavefunctions y(x) which are non-
local functions of ¢(x). Also notice that the factor 2 in (9) accounts for the spin degeneracy of the energy
eigenstates. Inserting (9) into (3), yields the following modified expression of the free electron density:

n(x) = /fg( (0,1, ) 4E = Y WS (0,0 E) in (10)

The choice of appropriate boundary conditions for (8) is a critical issue. A straightforward approach, which
turns out to be computationally efficient, has been adopted in [8] and consists in setting

lﬁ()‘”agsi =0, (11)

where 0Qg; is the boundary of the semiconductor domain Qg;. Enforcing homogeneous Dirichlet boundary con-
ditions for the wavefunction has the unphysical consequence that n|,, . = 0. To solve this inconsistency, the
classical expression (6) is forced to hold in regions of the device where quantum effects are assumed to be neg-
ligible. This, in turn, demands to define a quantum region Q, < Qg;, where (10) holds, and a classical region
Qq < Qg;, where (6) holds instead, so that Qg; = Q, U Q.. To properly account for the resulting splitted consti-
tutive relation for n, a quantum correction factor is defined as follows. We introduce a quantum electron density

72Z|W WS (@,(x),E) in Qo (12)
and a classical electron density ng(x) given by relation (6). Then, we set
1 in ch,
7a(X) =4 ny(x) . (13)
e m Qp

and, accordingly, we define

() = 3 mmexp (P2 g )x) in (14
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Definition (13) introduces a jump discontinuity in the electron density » across the interface between Q, and
Q.. A quantitative analysis of this issue is carried out in Section 3.4 where it is shown that a proper choice of
the ratio between the sizes of Qy and Qg leads to negligible effects of such discontinuity. By setting

G, (x) = Ve In(y,(x)),

relation (14) can be rewritten as

o) — - exp <<o<x> +Gyx) - %(x)) o 0

Vin

so that, repeating the derivation carried out in Section 2.1, with (14) in place of (6), yields the following
modified constitutive relation for the electron current density

Jn(¥) = =qu,n(x)Ve,(x) = =qu,(n(x)V(p(x) + Gu(x)) = Vi Vn(x)). (16)
Following a completely similar procedure, the hole current density reads:
Jp(x) = =qup(x)Ve,(x) = —qu,(p(x)V(e(x) + Gp(x)) + Vi Vp(x)). (17)

Let us now come back to assumptions (a) and (b) introduced at the beginning of the section. In most
real-life applications both these conditions are too restrictive, so that it is convenient to extend the SPDD
model to the case where neither of the two conditions (a) and (b) holds. As for assumption (a), we notice
that the computation of the eigenvalues of the discretized Hamiltonian is a rather intensive numerical task.
Therefore, it is convenient to solve (8) only in a smaller subdomain Qg,, < Q that needs to be properly de-
fined in such a way that the closed boundary condition (11) does not relevantly affect the quantum charge
ny(x) in Qp, which is the device subregion under the interface between silicon and silicon dioxide where
quantum effects are expected to be important. A representation of the device subdvision into the several
physical subdomains described in this section is shown in Fig. 1.

As for assumption (b), it must be noted that if the Schrodinger equation is solved in Q C RY, d =1, 2,
then quantization effects are accounted for only in R?, so that a continuum approximation similar to (9)
must be adopted for the energy levels associated with the remaining spatial directions. Therefore (9) and
(10) only hold if @ c R*, while in the case @ ¢ R?, d = 1,2, we have

9B, ) = S HE=E) | 0,(0)Pe ,(E), (18)
where H(E — E,-)I denotes the Heavyside step-function centered at E;. Accordingly, (12) becomes
m) = [ e (0,0 8)AE = S WF [ g (B (0,0).E) OB (19)
where |
. ifd=1,
- (20)
g =[50l - E)"? ifa=2.

2.3. The QDD model

The QDD model was introduced in [22] and originally named Density Gradient model because it was
obtained by allowing the electron gas equation of state to relate the quasi-Fermi potential ¢, not only
to the electron density but also to its gradient. According to the single band version of the QDD model,
the electron density can be expressed using the modified Maxwell-Boltzmann relation (15) and the quan-
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Fig. 1. Subdomain division of a two-dimensional cross-section of a MOSFET device.

tum correction G, to the electric potential ¢ (usually referred to as the Bohm potential) is defined by the
relation

1 W
G, = —div[ — . 21

Nz (6qu vﬁ) 1)
For a microscopic derivation of (21) from the Wigner equation, we refer to [9] and [7], while in [22] a mac-
roscopic approach is adopted. Notice that the QDD expressions for the current densities are formally iden-
tical to (16) and (17). This formal analogy will be exploited in Section 6 to construct numerical algorithms
for the solution of the SPDD and QDD transport models.

2.4. Scaling

Before proceeding, it is useful to rewrite the DD, QDD and SPDD systems in a scaled form. The scaling
has the advantage to emphasize the singularly perturbed nature of the equations, which can be used as in
[14] to perform an a priori qualitative analysis of their solutions.

Our choice for the scaling parameters is as follows [13,14]:

e the scaling factor for the carrier densities is chosen to be the maximum value of the doping throughout
the device: 7 = ||D|| o, Where [l is the norm for the space L™(€) of essentially bounded functions
over ;
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e voltages are scaled with respect to the thermal voltage, therefore ¢ = Vy,;

e lengths are scaled with respect to the diameter of the device: X = max,, ,,colx1 — X2;
e mobilities are scaled with respect to the zero field electron mobility: & = p, .

Accordingly, we define the following non-dimensional quantities:

n=

~ — v 1 inf n ~ — - X
) @:g7 @n:(p’1+ lh—n(n l/}1)7 X =z, Hy :@7 U:UL_ (22)
¢ ¢ u qun

and the non-dimensional coefficients

SIS
=l =

2 _
g p=lay 2T (23)
bgmx“p 7] qx°n
Using (22) and (23), Eq. (21) becomes
- 1 T 2SS/~
(h_;%m%@VJQ.

Similarly, the Poisson equation (1); reduces to

~div(i3V§) =p -7+ D,
while the continuity equation (1); reads
—~div(7, AV ($ + G,) — pVA)) = U.
As for the Schrodinger equation (8), we set
2
%=Zé§%,
and we obtain
—n2divVy + Ecyp = EV.
Furthermore, we define the non-dimensional coefficient

g = "t (24)
n

which will be useful in the definition of the boundary conditions.
In Table 1, we summarize the non-dimensional coefficients for electrons and holes appearing in the QDD
and SPDD equations, providing their numerical values in the case of a nanoscale device.

Table 1

Non-dimensional coefficients in QDD and SPDD equations for a device with 7 = 10** m and x = 107’ m

Symbol Meaning Value

n? 72/ (2qm:px?) 1.46x 1072
mn 1/ (2qm;px?) 425%107°
B Vth/(a) 1

3 72/ (6gm’%2p) 1.88x 107*
& 7/ (6qm’X*®) 5.48x107*
pe (@¢)/(¢7) 1.7% 1073

0 Rine /7o 6.1401 x 10~°
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3. Unified framework for quantum-corrected DD models

We have shown in the preceeding sections that the QDD and SPDD models can be regarded as gener-
alizations of the classical DD model, only differing by the choice of the constitutive relation for the quan-
tum corrections G, and G, to the electric potential. In this section, we will present a unified framework for
quantum-corrected DD models which includes both QDD and SPDD as special cases. These latter models
can be derived by an appropriate definition of the constitutive relations for the quantum correction poten-
tials G,, and G,,. For sake of completeness, we consider both electron and hole contributions to charge trans-
port. For ease of notation, we will use henceforth for any scaled quantity the same symbol as in the
unscaled case.

3.1. The unified form of quantum-corrected DD models

All of the three models discussed in Section 2 can be written in the following unified form:

—div(2’Ve)+n—p—D =0,

—div(u,(Vn —nV (e + G,))) = =U,

—div(u, (VP +pV (9 + G,))) = =U,

n=exp((¢ + G) — @,), (25)
= exp(@, — (¢ + Gp)),

Gn = Gu(9, ¢, n),

Gp = Gp((/’7 (/’,ﬂp)'

In (25), the quantity U represents the scaled net recombination rate in the semiconductor and is a function

of the carrier densities n, p and quasi-Fermi potentials ¢, and ¢,. A constitutive relation for this term in

quantum-corrected models is not well established. In [23], the authors propose the following formal
expression:

1

e — — 26
ao—l—aln—&—azp(eXp(q)p q)n) a3)a ( )

where ag, a1, a, and a3 are positive constants which should be chosen in such a way that U vanishes at equi-
librium. An example of a recombination model which fits (26) and respects the latter condition is proposed
in [24] as a QDD extension of the classical Shockley—Read—Hall theory [13]. As the focus of this paper is on
comparing different choices for the quantum correction terms, in what follows we will neglect recombina-
tion phenomena and set U = 0.

Each particular model is characterized by the constitutive relations (25)s and (25); for the correction
terms G, and G,

The DD model corresponds to setting

GDD ) ) = 07
{GED(Q) Py 1) . 27)
P ((p7 (ppap) -
while the QDD model corresponds to setting
G (¢, ¢,,n) = 3, 7dlv(\vf‘/'_l) :
. (28)
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Getting G,, from (25)4 and G, from (25)s, and substituting them into (27) yields the following equivalent
relations for computing the Bohm potentials, which are more amenable to numerical implementation

—div(5;Vy/n) + v/n(p, — o +1n(n)) = 0,
—div(a;vws) +vB(—9, + ¢ +In(p)) = 0,
G° = (¢, — ¢ +In(n)),

G° = (¢, — @ —In(p)).

Finally, denoting by {E,;}, {{,.;}, the eigenvalues and the corresponding eigenfunctions of the Hamiltonian
H, = [-n?A + E] for electrons, and by {E,;}, {{,,;} the eigenvalues and eigenfunctions of H, = [—n[%A — E,]
for holes, the SPDD model corresponds to setting

(29)

by — @ + ln(z |lpn,'|2.f(q0n7Eni)) in Q ’
GEPDD(%%’H) _ - o
0 in chv
(31, *f (@, E,)) inQ 0
¢, — @ —1n . @, Ep, i Qp
G (p,0,,p) =1 P
0 in ch,
which can be cast in the following form more similar to (29):
22 |lpn;|2<f( nﬂEﬂ,) in QQ?
n= i
exp(@ — ¢,) in Qg
o 22 |"ppi|2<f(q0p7EP,') in QQ7 (31)
exp(¢p, — @) in Q,
GEPDD = ((pn - + ln(n))a
S
GYPP = (¢, — ¢ —In(p)).

As already described in Sections 2.2 and 2.3, both QDD and SPDD systems modify the classical DD model
by introducing a certain amount of non-locality in the relation that links the carrier densities to the elec-
trical and quasi-Fermi potentials. More precisely, in the QDD model this non-locality effect is obtained
through a dependance of ¢,, on the gradient of the concentrations, while in the SPDD model it is obtained
through a more detailed physical description of the density of states. A cross-validation and mutual com-
parison among the three models discussed in this section will be the object of thorough investigation in the
numerical experiments shown in Section 7.

3.2. Boundary conditions

In this section, we define the proper boundary conditions for the QCDD models introduced in Section
3.1.

In the case of the QDD model, we let Q ¢ (O,l)d, d=1, 2,3, be the scaled device computational domain,
with Qg;cQ and Qox = Q \Qs; (see Fig. 2). Moreover, let I's; = 0Qg; be the boundary of Qg;, I'ox = 0Q0x the
boundary of Qox and I';= I'gx N I's; the interface between Qg; and Qox, vox and vg; being the outward unit
normal vectors to I'ox and Is;, respectively. These latter are divided into three disjoint subsets in such a
way that I'ox = I'oxp, U Toxy U T and I's; = iy, U I'si, U I'1. The subsets I'ox,, and I'si; model the ohmic
contacts, where Dirichlet boundary conditions are given for carrier densities and potentials, while I'ox,, and
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I, are the remaining part of the boundary where Neumann conditions are enforced. More precisely, the
boundary conditions for the QDD model are as follows:

e at the Ohmic contacts a Dirichlet boundary condition is given for both the carrier concentrations and for

the electric and quasi-Fermi potentials

”|rSiD = np, P|r5iD = Pp (32)

Plrg, = Psipr Pulrg, = Pupr Polrg, = Por Plroy, = Poxo-

Furthermore, we assume that thermal equilibrium conditions and charge neutrality hold at the contacts,
and that quantum effects are negligible so that

poip = 07,
np — Pp — D|F51D =0,
(pnll"S;D =@, — ln<0)’ (33)

(PP|FSiD = @, + 11'1(0),
0lr, = 0 —1n(0) + In(np),

where ¢, is the scaled external applied potential at the ohmic contacts;
o at the artificial boundaries I'ox, and I, the normal components of the current densities and of the
electric potential and carrier density gradients are set equal to zero

Jn'VSi|1"SiN :Oa Jp‘vSi‘FSiN :07
V(p . VSi|FSiN = 0, VQD : VOX‘FOXN = 07 (34)
\'E VSi‘FsaN =0, Vp- VSi|rsiN =0;

e at the boundary interface between oxide and semiconductor, imposing a proper set of boundary condi-
tions is a more involved and delicate issue. On the one hand, in a quantum model, one would expect the
carrier densities to become very small in the vicinity of the very high potential barrier given by the gate
oxide, and in the limit of an infinite barrier one should predict that both carrier densities tend to zero. On
the other hand, the condition of zero free charge carriers at the interface is incompatible with the mod-
ified Maxwell-Boltzmann statistics for electrons and holes, because it would require G, and G, to tend to

Fig. 2. Boundary subdivision for a two-dimensional cross-section of a MOSFET device.
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—oo and +oo, respectively. To circumvent this problem, one can set the interface densities equal to a
small but non-zero value ¢;, which might be estimated by a priori 1D computations with a model includ-
ing tunneling of free carriers through the oxide barrier [24]. In the numerical computations presented in
Section 7, we have imposed a value of 1072 m > for the charge densities at the interface, which corre-
sponds to a non-dimensional concentration ¢; = 1072”. Furthermore, at the interface we impose the nor-
mal component of the current densities to vanish and the normal component of the electric displacement
vector to be continuous, i.e.,

n‘rl :p|r, =<
Jn'VSi‘FI 207 Jp'VSi|1"I :07 (35)
[AZV(p . VSJ rn = 07

where [f], denotes the jump of a function f across the d — 1-dimensional manifold y.

In the case of the SPDD model, the mathematical formulation of the boundary-value problem requires a
further subdivision of Q as anticipated in Section 2.2. With this purpose, let Q, < Q be the device subdo-
main in which we expect (by a priori physical considerations) the quantum effects to be relevant. Let
Qo= Q\Qp, and let Qg be a suitably chosen subdomain such that Q D Qgehe Qo (see Fig. 1). The choice
of Qg 18 the result of a careful trade-off. On the one hand, Qg should be large enough to ensure that the
closed boundary conditions (11) for Eq. (8) do not significantly affect the quantum charge distribution. On
the other hand, the choice of a too wide Qg can greatly increase the computational cost of the eigenvalue
problem. Conditions (32)—(35) still hold for the SPDD model. In addition, homogeneous boundary condi-
tions are enforced on the wavefunctions on 0Qg.,, as in (11).

3.3. Recovering the classical limit

As we have presented both the QDD and SPDD models essentially as perturbations of the classical DD
model, it is natural to briefly address the issue of how those two former models reduce to the latter in the
classical limit.

In the case of the QDD model, we start noticing that, by formally setting 5i = 5; = 0, we immediately
recover the DD model. The mathematical analysis of the limiting behaviour of the QDD model has been
carried out in [23], where it was shown that the solution of the QDD model converges to the solution of the
classical DD model as &2 5127 — 0. From a quantitative point of view, letting

hz
LQDD _
c 6m;kb T,

we note that 5,21 < 1 when ¥ > LSDD, so that, at room temperature (7 = 300 K), the classical limit is at-
tained when the characteristic device length ¥ is much larger than £§”” = 1.4 nm.

For the SPDD case, it is well known (see for example [25]) that for a very large crystal and near equi-
librium the summation in (9) reduces to the expression in (4) so that y, = 1. As an example, we consider a
1D case with ¢ = 0, for which the following exact expression of the energy eigenvalues is available

E =E. +nnit, i=12,... (36)

Introducing the previous relation into (19) with d = 1 yields
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g(E) = (¢(E,x)) = iH(E—EM Vi) &)= D H(E - E)g(E)

i<z-VE=Eq

—int( o VESE ), (37)

n

where (f(x)) is the integral mean value of a function f over the device domain and Vz € R, int(z) stands for
the greatest integer smaller than z. Thus, for

1
VE—E.> 1, (38)

i,
one gets
1
(8) = (2 VE= B )ex(B) = e,(8)

which is the same density of states function used in (4). Letting

[SPDD _ ok’
o 2mky T’

we note that condition (38) 1is attained for energies E>E. if 1<« # =x/Ly"°, ie., for
%> LSPPP = 7.5 nm, which is essentially the same condition obtained in the case of the QDD model.
Fig. 3 shows the quantum correction G, in the channel of a 1D n*—n-n" device for different values of the
channel length. Concerning with the top figures, on the x-axis, we indicate the length of the device (in m),
while on the y-axis we denote the scaled position along the device. The bottom figures display the quantity
G, at the middle of the channel as a function of the device length. Notice that, as expected, the quantum

correction becomes negligible as X increases.

SPDD

3.4. A proper choice for the quantum region

In the example discussed in Section 3.3, we have considered, for sake of simplicity, a spatial average of
the modified density of states g(E,x), which, for a uniformly doped material, leads to a constant quantum
charge density n,. Actually, even in the case ¢ = 0 and D constant, the quantum charge density is not con-
stant in Qge,, but, if the width ¥ of Qg satisfies the condition X > LPP, it is almost flat about the center
of the well, where the value of n, is close to nj,, and rapidly goes to zero at the boundaries. For this reason,
as described in Section 3.2, one can obtain an almost constant charge density by forcing 7, =1, i.e.,
Ny = N = Nine in a subregion Qgch\Qp of Q. The choice of the subregion Qp has to be made in such
a way that the discontinuity suffered by the charge density n across its boundary 0Q is small. In Fig. 4,
the jump [nin — ny|/Mine = |1 — y,| for the case ¢ =0 is plotted as a function of the width X of the well.
The white and red line show the width of the quantum region for which |1 — 7,| < 0.01 and |1 — y,| < 0.001,
respectively.

Notice that, as X increases, the distance from the boundary at which n, approaches n;,, decreases very
rapidly. To understand this fact, we can use the exact expression of the wavefunctions

. 2.
()P = lsmz& - 2sin2(2ni>, i=1,2,...,
Jo sin” (imx) dx A;

where we have introduced the scaled wavelengths A; = 2/i. It can be easily checked that, by inserting (20), in
(19) and applying the scaling procedure described in Section 2.4, one gets
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Fig. 3. The quantum correction potential G, in the channel of a 1D n*—n-n" device as a function of the channel length (figures on the
left are obtained by QDD simulations and those on the right by SPDD simulations).

m:nka

xh*

n, =2 Z: ¢,sin’ (2n%> exp(—E;, — o,), (, = (39)
From (39) and (36) it becomes evident that, increasing the well width X the energy E; associated with a given
wavefunction y; of wavelength A; (with i fixed), decreases rapidly so that its contribution to the summation
in (39) becomes more relevant. Therefore, while for small X low wavelength functions are strongly damped,
as X becomes larger they become more important. This can be also observed in Fig. 5, where the product
SEXg(E)) for DD and 1D SPPD models is compared for different values of x.
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Fig. 5. Comparison of the product f{E)g(E)) for DD and 1D SPPD models for different values of X (the gray area is the difference

between (n,) and 7).

4. Functional iterations

In this section, we discuss the decoupled functional iteration that will be used to solve the unified quan-
tum-corrected model (25). This model constitutes a highly nonlinear system of boundary-value problems.
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The choice of the Newton method for the linearization of (25), although attractive due to the quadratic
convergence, is affected by several drawbacks. First, its high computational effort (in terms of memory stor-
age, ill-conditioning of the Jacobian matrix and linear system solution at each step of the iterative proce-
dure). Second, the need of availing (or constructing) a good initial guess to fully exploit second-order
convergence. Third, the strong request on computing strictly positive carrier densities, which is a priori
impossible to ensure when dealing with a fully coupled solution approach.

To overcome these limitations, a decoupled algorithm, well-known as Gummel map [26], is usually em-
ployed in the numerical approximation of the Drift-Diffusion model. The Gummel map can be interpreted
as a nonlinear block Gauss—Seidel functional iteration, which consists in the successive solution of the non-
linear Poisson’s equation (25); coupled with (25)4 and (25)s, and of the two linearized continuity Egs. (25),
and (25)3. The method typically exhibits a rapid convergence and a good robustness with respect to the
choice of the initial guess. Moreover, stable and monotone discretization schemes can be applied to the
numerical solution of the linearized continuity equations, which allow to compute strictly positive carrier
concentrations with appropriate current conservation properties (see [27-31]). A detailed study of the Gum-
mel map can be found in the references [32,33,14,34,20,15].

In the following, we propose a generalization of the Gummel decoupled algorithm to the iterative solu-
tion of the quantum-corrected model (25).

With this aim, we construct a functional iteration

(P 9p) = T(@,, 0,) (40)
mapping a given couple (¢,,¢,) into T(¢,,p,), as follows:
(Step 1) compute

(¢, G, Gy) = (9, 9,) (41)

by iteratively solving the subsystem (25);, (25)¢ and (25);, where the generalized Maxwell-Boltzmann sta-
tistics (25)4—(25)s is used for n and p in (25);;
(Step 2) compute
@, = Du(¢. Gy) (42)
by solving the linearized electron continuity equation (25), with respect to the variable » and then setting
@, = (¢ + G,) — In(n);
(Step 3) compute

Pp = Pp(9; Gp) (43)

by solving the linearized hole continuity Eq. (25); with respect to the variable p and then setting
¢, = (@ + Gy) +In(p).

The boundary conditions for each differential subproblem involved in (40) are the same as described in
Section 3.2. During the execution of Step 1, the functions ¢, and ¢, are given and kept fixed, while in Steps
2 and 3, the functions ¢, G, and G, resulting from Step 1 are plugged into (42) and (43) and kept fixed, as in
a standard Gauss—Seidel procedure (see [15] for a thorough discussion of this latter aspect). Special atten-
tion must be paid to the treatment of the net recombination rate in the solution of the linearized electron
and hole continuity equations. As a matter of fact, the expressions (42) and (43) have rigorous validity only
if, as is the case for this paper, the recombination term is neglected, otherwise one should also linearize U
with respect to ¢, and ¢,. A possible strategy could be to resort to the lagging procedure described in [15],
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although a more thorough investigation is needed about this issue (see [24] for some numerical results in the
case of the QDD model). The above decoupled iteration consists of an outer loop (Steps 1, 2 and 3) and of
an inner loop (Step 1). This latter loop can be regarded as a consistent generalization of the solution of the
nonlinear Poisson equation (25);, where the algebraic Maxwell-Boltzmann relations (25)4—(25)s for n and p
are replaced by the solution of the differential problems (29) (in the QDD case) and (30) (in the SPDD case).

In the case of the DD model we have G, = G, = 0, and the algorithm (40) reduces to the classical Gum-
mel map.

In the case of the QDD model, the inner loop (41) is defined by the following fixed point map:

(Step 1.1)  Initialize G, and G, and compute
QD = Q(/)(q)nﬂ (ppv GIH Gp) (44)

by solving with respect to ¢ the nonlinear Poisson equation (25); coupled with (25)4-(25)s;

(Step 1.2)  compute
G” = G”l((/)7 (pn) (45)

by solving the nonlinear equation (29); with respect to the variable /i, and setting

G, = ¢, — ¢ +1In(n);
(Step 1.3)  compute

Gp = Gp(@; 9,) (46)
by solving the nonlinear equation (29), with respect to the variable /p, and setting

G, =¢,— ¢ —In(p).

In the case of the SPDD model, Steps 1.2 and 1.3 are replaced by the computation of the eigenvalues and
eigenvectors for the Hamiltonian operators H,, and H, (see Section 3.1) and by the computation of G, and
G, through relations (30). In the simulation of n-type devices, such as an n-channel MOS transistor, where
current transport is mainly due to electrons, the solution of the SPDD equations for the hole carriers can be
conveniently replaced by the solution of the corresponding DD equations. This allows to significantly re-
duce the high computational effort of the two-carrier SPDD model, maintaining at the same time a reason-
able physical accuracy of the model. This simplified SPDD model is discussed in Sections 6.2 and 7. An
analogous procedure can be obviously carried out when simulating p-type devices, by neglecting quantum
transport effects due to electron contribution.

The convergence analysis of the generalized Gummel map (40) and of its corresponding finite element
discretization (discussed in Section 5) will be object of a forthcoming paper. At the present stage, the main
difficulty is to deal with Steps 1.2 and 1.3, that are the major (nonlinear) modification to the standard Gum-
mel map used in the DD model. In particular, it is crucial to establish that a maximum principle is satisfied
by the solutions \/n and /p of (29); and (29),, proving as a consequence that n and p are positive quantities
through the functional iteration (40). The issue of positiveness of the carrier densities will be addressed in
more detail in Section 5, where a (properly) damped Newton method will be adopted to construct itera-
tively a sequence of positive approximants to the solutions of the nonlinear equations (29),; and (29)s.

Other functional block nonlinear iterations for the QDD model, related to (40), were proposed and
analyzed in [16] and [17]. In the first reference, a generalized Gummel map is considered which consists of
the successive solution of two nonlinear blocks, each one through a fully coupled approach. The first block
amounts to carrying out Step 1 through the coupled solution of Egs. (25)1, (29); and (29), with respect to the
variables ¢, n and p, while the second block amounts to carrying out Steps 2 and 3 through the coupled
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solution of Egs. (25), and (25); with respect to the dependent variables. In the second reference, a unipolar
1D QDD model (for electrons) is dealt with. The structure of the proposed iterative mapping is similar to
that in [16], the main difference being the use of the (generalized) Slotboom variable u, = ne~(**%)instead
of the quasi-Fermi level ¢,, in the solution of the (linear) electron continuity equation.

5. Finite element discretization

In this section, we describe the finite element discretization of the differential subproblems involved in the
generalized Gummel map introduced in Section 4.

5.1. Approximation of the QDD model
Step 1.1. amounts to solving the nonlinear Poisson equation
~div(2Vo) +exp((¢ + G,) — ¢,) —exp(¢, — (9 +G,)) =0 in Q (47)

with respect to the unknown ¢, for given ¢,, ¢,, G,, G,, and subject to mixed Dirichlet-Neumann bound-
ary conditions as discussed in Section 3.2. A damped Newton method is adopted for the linearization of
(47), and the corresponding discretization is carried out using piecewise linear continuous finite elements
as done in [35] in the case of the DD model. The resulting linear algebraic system to be solved at each step
of the damped Newton iteration is characterized by having a symmetric positive definite and diagonally
dominant coefficient matrix, provided that a suitable lumping procedure is employed to treat the zeroth
order term in (47). The solution of the system is then efficiently performed by a preconditioned Conjugate
Gradient method.

The iterative solution and the finite element discretization of Steps 1.2 and 1.3 is a critical issue, because
of the need of maintaining positive solutions for the (square root) of the carrier densities. With this aim, we
have modified the standard Newton procedure by introducing a relaxation parameter, to be chosen in such
a way that the linearized boundary value problem (and the corresponding finite element approximation)
enjoys a maximum principle. This is a sufficient condition to ensure positivity of the computed approximate
carrier concentrations. We describe the novel methodology in the case of the Eq. (29), for electrons, a
completely similar treatment being used to solve the Eq. (29), for holes.

Let w = /n; then, the standard Newton iteration applied to problem (29), reads: given an initial guess
w®, at each step k > 0 solve for the unknown w* ™V the linear elliptic problem

—div(S2Vwh D) 4 (¢, — @ + 2In(wB))wkHD 1 20 ED = 20 i Qg (48)

subject to mixed Dirichlet-Neumann boundary conditions (for the variable /n instead of 1) as discussed in
Section 3.2. If the following condition is satisfied

(@, —@+2In(W®)+2 >0 in Qy (49)

then (48) defines a linear continuous mapping from the function space H}Si (Qs;) into itself, where
H'ng (Qs;) is the Sobolev space of order 1 accounting for non-homogeneous boandary conditions associ-
ated with w# * D (see [36,37] for a definition of this functional space and a discussion of its properties).
Moreover, it can be checked that a maximum principle holds for the weak solution of (48), which implies
that w* " V'> 0 in Qg; provided that w®, k > 0, and the boundary data are positive.

In the case where condition (49) is not satisfied, we can still ensure positivity of w*

damping parameter 1,0 < t; < 1 in such a way that

* D by introducing a
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2
t
“ = Tinf(g, — o + 2I(w))]
Si

and modifying (48) as follows

. , 2 4 2 :
—div(,VwE) + (@, — @ + 2In(w¥)wkHD 4 t—w(/‘“) = 7w<k> in Q, (50)
k k

where the use of 7, on the right-hand side is required to maintain the consistency of the iterative procedure.

Problem (50) defines a modified fixed-point iteration with relaxation which, albeit not enjoying in general
the quadratic convergence of Newton method, ensures that the square root of the electron carrier concen-
tration remains positive at each step. The finite element discretization of problem (50) with piecewise linear
continuous finite elements proceeds as in the case of the nonlinear Poisson equation (47). In particular, by
lumping the mass matrix corresponding to the zeroth-order term in (50), the resulting linear algebraic sys-
tem is characterized by having a symmetric positive definite and diagonally dominant coefficient matrix,
with positive diagonal entries and non-positive off-diagonal entries, and by a positive right-hand side. These
properties ensure that the coefficient matrix is an M-matrix and that the positivity property of w still holds
on the discrete level.

Once Step 1 has been solved as described above, the numerical approximation of the remaining linear
continuity equations (Steps 2 and 3) is carried out by a finite element scheme using piecewise linear contin-
uous elements with exponential fitting as done in [31] in the case of the DD model. This approach is a con-
sistent generalization of the classical Scharfetter-Gummel difference scheme to Delaunay-type triangular
decompositions of the device domain. It has the advantage of automatically introducing an upwinding
treatment of the carrier densities along triangle edges, which in turn ensures that the method satisfies a
discrete maximum principle with positive nodal values of the carrier densities n and p (see [38,39] for a thor-
ough discussion of this latter subject).

5.2. Approximation of the SPDD model

As it has been pointed out before, the algorithm used for solving the SPDD system only differs from that
for the QDD system by the method used to compute the quantum correction potential. In particular, the
solution of the nonlinear elliptic boundary value problem (29); is substituted by the computation of the
eigenvalues and eigenvectors of the Hamiltonian H, followed by the summation (31),. This approach
has two main effects which are relevant for the implementation of the numerical algorithm; on the one
hand, (31); guarantees that the quantum charge is always positive, on the other hand the heavy cost of
the eigenvalue/eigenvector problem makes it very convenient to neglect the quantum correction term for
one of the carriers, when it is not expected to have a high impact on the value of the currents. For example,
in the device simulation presented in Section 7 we have treated the holes using the DD model. To discretize
the operator H,, we have used piecewise linear finite elements, and we have solved the discrete eigenvalue/
eigenvector problem using Arnoldi’s method.

6. Numerical algorithms

In this section, we provide a detailed description of the algorithms emanating from the iterative proce-
dure (40) for the approximate solution of the QDD and SPDD models.
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6.1. Detailed description of the algorithm for the QDD model

o Input {o© (,0300 Go,p 0401(70’(; toll, kmax, jmax}

e set 730 = In(G,) 50 2 In(G]

o fork=1,... kmax (k is the outer iteration counter)
(1) forj=1,..., jmax (j is the inner iteration counter)

(a) Solve for ¢(using a damped Newton method):

—div(’Ve) + 91, exp(p — ) =3 exp(—¢ +¢)) =D =0
(b) set:

(k)
Py =@

(¢) Solve for w(using the modified Newton method):
. k
—div(3;Vw) + w(ol) — ¢}, +2In(w)) = 0
(d) Solve for v (using the modified Newton method):

~div(82V0) + v(—o¥ + o) + 21n(v)) = 0

(e) set:
n, = w, p, =1
ng = exp(goj(.i)l - @ﬁ,“); Pa = exp((pl(]k) — (pﬁ.]jr)l)
Gik)m = 902“ —ofh+2l(w), G = ol - o) —2In(w)
W =t =exp(Gl,), o =p=exp(GY),,
(k+>1 =¥ ,anl, pj(.i)l = ypk),-H Py

() if ||€0j+1 - 90]' ||oo.Q < toll set:

<P(k+1) = (/’j('i)l

R )
Gl = Gilk)j+l7 G(k+1) Gl(] )]+1
pltD) = o0 o y1()k+1) _ Vp .

and proceed to step 2
(g) else :repeat stepsa) —e)
(2) Solve for m:

_le(:unvn - :unnv((p(k+l) + Gitk+1>)) =0
(3) set:

k1 ket 1 n*
Myl =1, (PE,+) @ —In )
Vn
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(4) Solve for p:
—diV(,upr + prv((p(k+1> n G}()k+l))) -0

(5) set:

(k+1)
_(k+1) p
= +1In ( (k+1)>
Tp

©) if o V=W o< toll and [lof) — 0P|
(7) else: go back to step I.

< toll and @) — o¥||

00,825

6.2. Detailed description of the algorithm for the SPDD model

e Input: Input: {9, 2, 0, p© 00 t011, kmax, jmax}

e for k=1,... .kmax (k is the outer iteration counter)

0)

(1) forj=1,...jmax (jis the inner iteration counter)
(a) Solve for ¢(using a damped Newton method):

—div(2’Ve) + 7 exp(o — ¢) = | exp(—p +¢))) =D =0
(b) set:
k
o =0

(c) Solve for the eigenvalues {E,;} and eigenvectors {{,}:
—div(n; V) + Ecfy = EY
(d) set:

2 00 k
ng =3 [ Wul® [o F(E)g(E)E,  na = exp(e)) — o)

I’lq .
W ) — in&
Vj+1 - Tel
1 in .ch
k (k) (k) (k)
Gi )j+1 = ln('))j+l)> Ny = Vil

H if ||(/>£i)1 - ;k)HOCQ < toll set:

k 1 k
(p(k+1) — (P§'+)17 n(k+2) = nj<+)1
D N () k1) _ Ak
p(k+2) =Py, GE, +1) _ G;(1 )j+l
k
Yl = “/;431

and proceed to step 2
(g) else: repeat stepsa) —e)

(2) Solve for m:

_diV(:unvn - /’trznv((p(k+l) + G:Sk+l))) =0

00,Qg;

553

< toll exit
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(3) set:
(k+1)
k+1 k+1 k+1 n
I’l(+)=l’17 £+):¢(+)_ln<m)

(4) Solve for p:
—div(u, Vp + u,pVe*) =0

(5) set:

(k+1) —p, (p(k+1) _ (p(k+1) _|_1n(p(k+1))

P »

6) iffp* " "—9Ws o< toll and [pf — o]
(7) else: go back to step 1.

< toll and [[@ft) — oW < toll exit

00,Qs; 00,8s;

7. Numerical results

In this section, we discuss the numerical results concerning the simulation of a nanoscale MOSFET de-
vice similar to that studied in [8]. In doing this, we will compare the computational performance and the
physical accuracy of the DD, QDD and SPDD models introduced in Section 2. Devices similar to the
one considered in this section are expected to be in mass production beyond 2010, as specified by the Inter-
national Technology Roadmap for Semiconductors [40,41].

The device geometry, the finite element triangulation and the doping profile are shown in Fig. 6. In all
the reported figures, the international system of units (SI) is used. The device has a 15 nm long channel with
a uniform p-type doping of 2 x 10*° m™; the drain and source contact regions have a uniform n-type dop-
ing of 5 x 10* m > and reach 20 nm down into the bulk. The gate oxide is 1.5 nm thick and is 25 nm long,
so that it has an overlap of 5 nm with both the source and drain regions. The triangulation consists of 3284
elements and 1726 nodes.

= e P B Vo o <10 Net Doping Concentration [m'3]
= s 4 e 4
.- s
1 2 3 4 5 6 7
x10° I
Quantum Box

0

Schroedinger Region
Classical Region

Oxide

Fig. 6. Left: MOSFET Geometry and finite element triangulation, with highlighting of the different subdomains. Right: net doping
profile (log-scale); positive doping is n-type, negative is p-type.



C. de Falco et al. | Journal of Computational Physics 204 (2005) 533-561 555

Fig. 7 shows the electric potential in the device with grounded bulk and source contacts and with 1.04
and 0.01 V voltages applied to the gate and drain contacts, respectively. Fig. 8 shows the electron density as
computed by the QDD (left) and SPDD (right) models and Fig. 10 shows the same quantities along the
following cross-sections:

e in the oxide-bulk direction at the middle of the channel (left);
e in the source-drain direction at a position corresponding to the electron density peak (right).

Both models exhibit a stiff boundary layer in the electron concentration at the Si/SiO, interface. No oscil-
lations arise in the computed solution, due to the monotone exponentially fitted finite element method used
to discretize the continuity equations. Notice that, although the potential distributions in the bulk-to-gate
direction are very similar, the stiffness of the boundary layer computed by the QDD model is much stronger
than for the SPDD model. This can be explained by looking at Fig. 9 that shows the computed Bohm po-
tential distributions. Note that the Bohm potential computed by the SPDD model is much smoother near

QDD - Electric Potential [V] SPDD - Electric Potential [V]

Fig. 7. Electric potential. The gate-to-source voltage is 1.04 V.

QDD - Electron Density [m”] SPDD - Electron Density [m™]

Fig. 8. Electron concentration. The gate-to-source voltage is 1.04 V.
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QDD - Bohm Potential [V] SPDD - Bohm Potential [V]

Fig. 9. Electron Bohm potential. The gate-to-source voltage is 1.04 V.

the Si/Si0O; interface. For the QDD model, it is also to be noted that the strongly negative value of the cor-
rection factor (G, ~—1.5V = G, ~ —60) forces the damping parameter #, defined in Section 5 to
become very small i > 60 = 1 <+). This has the drawback of slowing the convergence of the
algorithm, but, at the same time, it ensurés the strict positivity of the electron concentration which is a man-
datory requirement in the physical problem.

A close-up on the channel of the transistor is given in Figs. 10 and 11. In particular, from Fig. 10 (left) it
becomes evident that the inversion layer computed by the SPDD simulation is much wider than that of the
classical simulation and the peak of the electron concentration is lower and it is attained a few nm’s away
from the interface. The QDD solution exhibits the same qualitative features but the quantitative prediction
of the charge peak shift is much smaller. The same phenomenon is observed by comparing the computed
DD current field shown in Fig. 11 (left) with the QDD current field shown in Fig. 11 (middle) and the
SPDD current field shown in Fig. 11 (right): in the former plot the current flow is concentrated at the inter-
face while in the latter two it is moved down towards the bulk because very few carriers are available at the
interface. By inspecting Fig. 10 (right) one may note that both quantum-corrected models predict a smaller
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Fig. 10. Electron density in a section along the channel (right) and through the channel (left) of a MOSFET device close to the silicon/
silicon-dioxide interface. The gate-to-source voltage is 1.04 V.
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i DD — Current Density x10° QDD — Current Density x10° SPDD - Current Density

Fig. 11. Electron current density in the channel of the device (left DD model, center QDD model, right SPDD model). The gate-to-
source voltage is 1.04 V.

charge density in the middle of the channel than classical simulations, but the QDD result appears to be
smoother in this direction than the SPDD one.

Fig. 12 shows the I-V curve of the transistor. Notice that the QDD simulation results display both the
relevant quantum-mechanical effects observed in [8] and in experimental measurements in [41], and consist-
ing of a threshold voltage shift and a degraded subthreshold slope (see Fig. 14) in comparison with DD
results. On the other hand, by comparing these results with the SPDD curve, we may note that the
QDD model underestimates both effects. An explanation of these two latter phenomena can be attempted
by comparing the log-scale curve in Fig. 12 (right) with Fig. 13 where we show on the left the total charge in
the device (g5 = [ 0,4(p — n+ D) dx) against the gate voltage and on the right the capacitance (Cvos = gi,fg‘)
against the gate voltage. As noted before, on the one hand, due to the strong confinement in the channel in
the bulk-to-gate direction, the QDD and SPDD electron concentration in the channel are consistently lower
than the DD value, on the other hand the QDD and SPDD inversion layers are wider and their width in-
creases with the increase of gate voltage, because lowering the potential barrier between source and drain

1=V curve (linear scale) |-V curve (log scale)

600 - 10
-e- DD | -e- DD
-4~ QDD -4~ QDD
—=— SPDD & > || == _SPDD

500 1 10

1, [A/m]

05 1 15
v,V

g

Fig. 12. I-V characteristics of a MOSFET device. Comparison between DD (dashed line) and bipolar QDD (solid line) models. The
drain current is plotted versus the gate-to-source voltage at 0.01 V drain-to-source voltage. Left: linear scale; right: log-scale.
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Fig. 14. Subthreshold slopes computed by DD and QCDD models.

regions allows carriers to directly tunnel through the channel, as is also observed in [3] for double-gate
MOSFETs. Comparing QDD and SPDD predictions seems to indicate that the QDD model underesti-
mates the peak shift effect while it overestimates the effect of charge penetration under the channel barrier.
As a concluding modeling remark, we point out that all the results provided by the QDD simulations rely
on a proper choice of the value of the quantum diffusion coefficient 82, which is typically used as a fitting
parameter depending on the semiconductor material [42]. The weight of quantum-mechanical effects along
different spatial directions suggests that to fit the QDD results with the SPDD predictions one might choose
to take (ﬁ as a rank-two tensor instead of a scalar quantity. This could have a strong beneficial impact in
routine device simulations because, although the SPDD model is less expensive than more advanced quan-
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tum models, the computational effort required for the simulation of one bias point with SPDD is about 10
times more than required by QDD (approximately 5 minutes running a Matlab computer code on a PC
with a 700 MHz PPC-G3 processor).

8. Conclusions and future work

In this paper, we have proposed a unified framework for quantum-corrected drift-diffusion (QCDD)
models in nanoscale semiconductor device simulation. QCDD models are presented as a suitable general-
ization of the classical drift-diffusion (DD) system, each particular model being identified by the constitu-
tive relation for the quantum-correction to the electric potential. We have examined two special, and
relevant, examples of QCDD models; the first one is the Schrodinger—Poisson—drift-diffusion model, and
the second one is the quantum-—drift-diffusion model. Both approaches provide a more accurate description
of the density of states than the DD model, in order to represent the effect of two-dimensional quantum
confinement on the charge densities in stationary regime. However, they neglect quantum effects in charge
transport modeling because they use a classical DD expression for the current densities. For the numerical
treatment of the two models, we have introduced a functional iteration technique that extends the classical
Gummel decoupled algorithm widely used in the iterative solution of the DD system. This extension rep-
resents, to our knowledge, the first fully decoupled procedure applied to the QDD model that ensures strict
positivity of the charge densities at each step of the iteration. We have discussed the finite element discret-
ization of the various differential subsystems, with special emphasis on their stability properties, and we
have successfully validated the performance of the proposed algorithms and models on the numerical sim-
ulation of nanoscale devices in two spatial dimensions.

Possible extensions in further investigation of QCDD models could be:

e the use of a Schrodinger equation with open boundary and direct quantum calculation of the current
densities to simulate quantum transport effects in device regions where the ballistic limit holds [6];

e the use of Fermi—Dirac statistics to account for short-range scattering phenomena related to the Pauli
exclusion principle;

e the inclusion of temperature effects connected with lattice heating (in the stationary case) and electron
gas heating (in transient computations).
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